Telegram Group & Telegram Channel
Как рассчитать вычислительную сложность модели машинного обучения?

Можно говорить как о временной сложности алгоритма, так и о пространственной. Первая описывает количество времени, необходимое для выполнения алгоритма. Вторая — количество необходимой памяти. В ML-моделях это всё зависит от входных данных.

Примем такие обозначения:
n = количество обучающих примеров,
d = количество измерений данных,

Тогда расчёты будут такими:
🔹 KNN
Временная сложность — O(knd) (k — количество соседей)
Пространственная сложность — O(nd)

🔹 Логистическая регрессия
Временная сложность — O(nd)
Пространственная сложность — O(d)

🔹 SVM
Временная сложность (при обучении) — O(n²)
Временная сложность (при запуске) — O(k*d) (k — количество опорных векторов)

🔹 Дерево решений
Временная сложность (при обучении) — O(n*log(n)*d)
Временная сложность (при запуске) — O(максимальная глубина дерева)

Отметим, что это лишь обобщённые оценки.

#машинное_обучение
#программирование



tg-me.com/ds_interview_lib/236
Create:
Last Update:

Как рассчитать вычислительную сложность модели машинного обучения?

Можно говорить как о временной сложности алгоритма, так и о пространственной. Первая описывает количество времени, необходимое для выполнения алгоритма. Вторая — количество необходимой памяти. В ML-моделях это всё зависит от входных данных.

Примем такие обозначения:
n = количество обучающих примеров,
d = количество измерений данных,

Тогда расчёты будут такими:
🔹 KNN
Временная сложность — O(knd) (k — количество соседей)
Пространственная сложность — O(nd)

🔹 Логистическая регрессия
Временная сложность — O(nd)
Пространственная сложность — O(d)

🔹 SVM
Временная сложность (при обучении) — O(n²)
Временная сложность (при запуске) — O(k*d) (k — количество опорных векторов)

🔹 Дерево решений
Временная сложность (при обучении) — O(n*log(n)*d)
Временная сложность (при запуске) — O(максимальная глубина дерева)

Отметим, что это лишь обобщённые оценки.

#машинное_обучение
#программирование

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/236

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA